Source code for pydolphinscheduler.tasks.datax

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

"""Task datax."""

from __future__ import annotations

from pydolphinscheduler.constants import TaskType
from pydolphinscheduler.core.mixin import WorkerResourceMixin
from pydolphinscheduler.core.task import BatchTask
from pydolphinscheduler.models.datasource import Datasource


[docs] class CustomDataX(WorkerResourceMixin, BatchTask): """Task CustomDatax object, declare behavior for custom DataX task to dolphinscheduler. You provider json template for DataX, it can synchronize data according to the template you provided. :param name: task name for this task :param json: json template string, or json file path for custom DataX task, :class:`CustomDataX` will not format json template, you should format by yourself. * Use config string directly instead of json file path * should use :func:`json.dumps` to format it if your json template is dict .. code-block:: python import json custom = CustomDataX( name="custom_datax", json=json.dumps({"job": {"content": [{"reader": {"name": "mysqlreader"}}]}}), ) * or format it by manual if your json template is native str. * Use json file path, the format it shows in web UI is depended on your json file content. .. code-block:: python import json custom = CustomDataX( name="custom_datax", # web UI datax config will show as json file content json="/path/to/datax.json", ) :param xms: jvm param about min memory for task datax running, default is 1g :param xmx: jvm param about max memory for task datax running, default is 1g """ CUSTOM_CONFIG = 1 _task_custom_attr = {"custom_config", "json", "xms", "xmx"} ext: set = {".json"} ext_attr: str = "_json" def __init__( self, name: str, json: str, xms: int | None = 1, xmx: int | None = 1, *args, **kwargs, ): self._json = json super().__init__(name, TaskType.DATAX, *args, **kwargs) self.custom_config = self.CUSTOM_CONFIG self.xms = xms self.xmx = xmx self.add_attr(**kwargs)
[docs] class DataX(WorkerResourceMixin, BatchTask): """Task DataX object, declare behavior for DataX task to dolphinscheduler. It should run database datax job in multiply sql link engine, such as: - MySQL - Oracle - Postgresql - SQLServer You provider datasource_name and datatarget_name contain connection information, it decisions which database type and database instance would synchronous data. :param name: task name for this task :param datasource_name: source database name for task datax to extract data, it must exist in dolphinscheduler's datasource center otherwise task datax will raise exception. :param datatarget_name: target database name for task datax to load data, it must exist in dolphinscheduler's datasource center otherwise task datax will raise exception. :param sql: sql statement for task datax to extract data form source database. :param target_table: target table name for task datax to load data into target database. :param datasource_type: source database type, dolphinscheduler use it to find :param:``datasource_name`` in datasource center. :param datasource_type: target database type, dolphinscheduler use it to find :param:``datatarget_name`` in datasource center. :param job_speed_byte: task datax job speed byte, default is 0. For more detail you can get from :seealso: https://github.com/alibaba/DataX :param job_speed_record: task datax job speed record, default is 1000. For more detail you can get from :seealso: https://github.com/alibaba/DataX :param pre_statements: task datax job pre statements, it will execute before task datax job start to load. default is None. :param post_statements: task datax job post statements, it will execute after task datax job finish load. default is None. """ CUSTOM_CONFIG = 0 _task_custom_attr = { "custom_config", "sql", "target_table", "job_speed_byte", "job_speed_record", "pre_statements", "post_statements", "xms", "xmx", } ext: set = {".sql"} ext_attr: str = "_sql" def __init__( self, name: str, datasource_name: str, datatarget_name: str, sql: str, target_table: str, datasource_type: str | None = None, datatarget_type: str | None = None, job_speed_byte: int | None = 0, job_speed_record: int | None = 1000, pre_statements: list[str] | None = None, post_statements: list[str] | None = None, xms: int | None = 1, xmx: int | None = 1, *args, **kwargs, ): self._sql = sql super().__init__(name, TaskType.DATAX, *args, **kwargs) self.custom_config = self.CUSTOM_CONFIG self.datasource_type = datasource_type self.datasource_name = datasource_name self.datatarget_type = datatarget_type self.datatarget_name = datatarget_name self.target_table = target_table self.job_speed_byte = job_speed_byte self.job_speed_record = job_speed_record self.pre_statements = pre_statements or [] self.post_statements = post_statements or [] self.xms = xms self.xmx = xmx self.add_attr(**kwargs) @property def source_params(self) -> dict: """Get source params for datax task.""" datasource_task_u = Datasource.get_task_usage_4j( self.datasource_name, self.datasource_type ) return { "dsType": datasource_task_u.type, "dataSource": datasource_task_u.id, } @property def target_params(self) -> dict: """Get target params for datax task.""" datasource_task_u = Datasource.get_task_usage_4j( self.datatarget_name, self.datatarget_type ) return { "dtType": datasource_task_u.type, "dataTarget": datasource_task_u.id, } @property def task_params(self, camel_attr: bool = True, custom_attr: set = None) -> dict: """Override Task.task_params for datax task. datax task have some specials attribute for task_params, and is odd if we directly set as python property, so we Override Task.task_params here. """ params = super().task_params params.update(self.source_params) params.update(self.target_params) return params